

Design and implementation of RF power amplifier for Zigbee nodes

Jacob R. Tietema 10 June 2010 Supervisor: Dr. Essa Jafar

Outline

Introduction / objectives

Simulations

Introduction / objectives

Simulations

Introduction

- Wireless modular Zigbee node
- Dimensions 25mm square
- 2400–2483.5MHz
- Transmit power 1mW max

Introduction

2nd Design: Transistor level design Class A max. PAE=50% Class B max. PAE=78.5%

Power amplifier Class AB or B

New RF layer

Objectives

No.	Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
	Supply Voltage		AV _{DD}	3.1	3.3	3.5	V
	Output power	BW=2MHz	P _{out}		12		dBm
	Spurious emission		P _{SP}			-80	dBm /Hz
	PAE	@ max power		23%			mA
	Gain			12			dB

Electrical parameters

No.	Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
	PCB dimensions					25x25	mm

Mechanical parameters

Introduction / objectives

Simulations

Design

Architecture

- Input impedance matching
- Load impedance transformation
- Output filter

Auto-bias

Architecture

Efficiency (red) versus power transfer (bleu)

Architecture

BFP640F BJT of Infineon has Been chosen based on S

Rload=270? for max. efficiency

Three problems arise:

- Input impedance varies quite severe
- Rload > Rout
- Gain is not sufficient

Solution: Two stages

Architecture

	Common collector (CC)	Common emitter (CE)
pros	Relative high input impedance	Voltage gain > 1
	Relative low output impedance	Manufacturers s-parameters available
cons	Prone to oscillations	Prone to oscillations
	Voltage gain < 1	Relative low input impedance
	No manufacturers S parameters available	Cascode needed for good efficiency
	Vbe voltage drop	Reduced headroom

New Rload=200? for max. efficiency

Input impedance matching

Unilateral figure of merit is too high for the BFP640F

Bilateral input Reflection coefficient:

$$\Gamma_{IN} = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 - S_{22}\Gamma_{IN}}$$

Bilateral design

Load impedance transformation

Smith chart, normalised to 200?

Output filter

Auto-bias

Op-amp

Introduction / objectives

Simulations

Simulations

CC s-parameters
CE Stability
F/T domain response

CC s-parameters

Common emitter

Common collector

CE Stability

CE Stability

F/T-domain response

F-domain

T-domain

Introduction / objectives

Simulations

Conclusions

- Of shelf RF PA IC has been fully implemented and manufactured
- Transistor level design RF PA has been designed with Spice and Matlab RF toolbox
- Spice simulations showed an efficiency of 55% @ 20mW

Future work

- RF switches have to be selected
- Spice simulation have to be checked once more including non ideal linear components
- A layout of the transistor level design has to be made

- The two designed PA's will be measured, compared and checked if they are on spec.
- After the measurements it might be necessary to reiterate the design

Questions

$$F_{total} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots$$